

Microgrids for a just energy transition

APEC Workshop on Driving Trade and Investment for DC Power Systems and Microgrid Frameworks Through Public Policy Alignment

Christian Roatta, Senior Trade and Multilateral Affairs Specialist UL Solutions Feb. 24, 2025

Safety. Science. Transformation.™

© 2025 UL LLC. All rights reserved.

What goals are we trying to achieve?

UL Solutions, empowering trust through:

Industries we serve

The five pillars of microgrid risk mitigation

Microgrid system and component designers must prioritize five foundational areas in addressing risk: safety, security, performance, sustainability and cost efficiency.

https://www.UL.com/resources/navigating-risks-andadvancing-mitigation-strategies-microgrid-systems

The five pillars of microgrid risk mitigation (continued)

Safety is paramount to achieve secure power delivery to users and safe working conditions for operators, installers and technicians. **Security** increases protection from natural disasters, intentional destruction, accidental scenarios and cyberattacks. **Performance** refers to the microgrid's ability to deliver necessary power during normal operating parameters and in the case of outlier events. Performance support strives to provide as much power as possible, even during critical events.

Sustainability is about designing and deploying systems that will work long term and establishing a preference for renewable energy sourcing wherever possible. Sustainable design enables reliable operation from reliable energy sources. **Cost-effectiveness** is a significant consideration in microgrid installations. Cost-efficiency metrics strive to create the best possible energy production and consumption scenario from a financial standpoint.

APEC Workshop on Microgrids for a Just Energy Transition (EWG 04 2023S)

- Oct. 16, 2023, in Manila, The Philippines
- The workshop convened **43 stakeholders from six** economies, comprising government officials, senior privatesector leaders and nonprofit experts.
- Twenty-seven of the participants were private-sector, while 14 were public-sector.

© Copyright 2023 APEC Secretariat

Report can be found here: <u>APEC Workshop on</u> <u>Microgrids for a Just Energy Transition | APEC</u>

Workshop: Challenges and recommendations

The workshop's expert panelists identified the following challenges and recommendations.

Challenges

- High degrees of regulatory complexity
- Varied and inconsistent regulatory requirements between and within economies
- Frequent changes in leadership at regulatory agencies
- High barriers to market entry and exit
- For some developing economies, short time horizons for investments can be a major barrier to incentivizing long-term financing.

Recommendations

- Streamline regulations and permitting approval processes.
- Periodically review technical regulations and conformity assessment procedures with the aim of increasingly aligning them with international, risk-based best practices.
- Use international standards, where applicable, for microgrid technologies.
- Strengthen public–private partnerships to stabilize financial investments in microgrids.
- Leverage additional opportunities for multilateral cooperation.

Additional takeaways

- Whether or not an energy system is part of a large grid or microgrid, all
 persons deserve safety and security. It is especially important to take steps
 to support underserved communities. Microgrid technologies and deployed
 systems are not sustainable assets if they are not safe and secure.
- Microgrids provide opportunities to increase the reliability and resiliency of energy access in both urban and remote settings, especially for underserved communities.
- Investment in further research and innovation is essential to expanding energy access. This includes research in business frameworks and models, effective public policy, peer-to-peer technologies, and more.

Building on the project

How do we build capacity in Asia-Pacific Economic Cooperation (APEC) economies while facilitating trade and investment?

Driving trade and investment for DC power systems and microgrid frameworks through public policy alignment

- Survey of APEC economies to identify preliminary challenges/recommendations (March-July 2024)
- Hands-on workshop of cross-cutting stakeholders to expand and develop policy recommendations and best practices (February 2025)
- Publish a project report to serve as a resource for public- and private-sector stakeholders (2025)
- Post-workshop monitoring and follow-up with APEC economies (2025-2026)

Framing questions to take forward into this workshop

Framing questions

- How does my economy's (or company's) experience with these investments differ from others' experiences? What is similar?
- How do safety, security and sustainability considerations for DC power and microgrid investments change across various contexts, e.g., in cities vs. remote settings? How should that effect our approach?
- How can public–private partnerships operationalize investments and reduce cost-associated risks?
- What lessons can be drawn from the successes and failures of investments in these technologies?
- What's on the horizon? What challenges are just beginning to arise but are not prevalent? How do we head them off?
- How can we leverage the results of this workshop in publications?

Thank you

UL.com/Solutions

Safety. Science. Transformation.™

© 2025 UL LLC. All rights reserved.

DC Microgrid for Communities in Thailand

Asst. Prof. Dr. Worajit Setthapun

Asian Development College for Community Economy and Technology (adiCET) Chiang Mai Rajabhat University, Thailand

Session 2 – Panel: Microgrids and DC Power Innovation

The APEC Workshop on Driving Trade & Investment for DC Power Systems and Microgrid Frameworks Through Public Policy Alignment Feb 24-25, 2025 Asia-Pacific Economic Cooperation (APEC) The First Senior Officials' Meeting (SOM1) and Related Meetings

Hwabaek Convention Center (HICO) Gyeongju, Republic of Korea

Thailand Smart Grid Development Master Plan (2015 – 2036)

Vision: "Promote sufficient, efficient, sustainable electricity supply as well as high quality services and maximization of benefits to the Country"

Thailand Smart Grid Development Work Plan

Medium Term 2022 - 2031

APEC 2025

Vision : Promote infrastructures development and management of necessary resources in the power distribution system. For support the energy transition to a modern grid system to be more efficient and environmentally friendly.

Microgrids in Thailand

Smart Grid Driven by the Utilities

EGAT – Mae Hong Son

PEA – Mae Sareang

Scenario 1 Before islanding

Scenario 2 Preventive islanding if a supply

interruption is planned, or an outage is expected Scenario 3 Automated islanding in case of unplanned grid failure

Scenario 4 Black start recovery to re-supply loads after grid failure

Scenario 5 Maintaining the islanding Scenario 6 Reconnection to the main grid

- Functions:
- 1. Peak Shaving and Valley Filling

- 2. Stabilize Fluctuation
- 3. Frequency regulation
- 4. Voltage regulation
- 5. Black start
- 6. Load Recovery

Chiang Mai Rajabhat University

- Chiang Mai Rajabht University Mae Rim Green Campus
- Chiang Mai World Green City: Sustainable-Green-Smart Community via Integration of Renewable Energy & Green Technology
- adiCET: Community Development through R&D, academic services to enhance local community quality of life and economy

DC Microgrid at adiCET

 Living Laboratory for community transition from AC → AC/DC → DC Community

- Evaluate Low Cost Low Voltage DC Community Power System at the Smart Community
 - Phase 1: Lightings 24 VDC/ 1 House 240 VDC
 - Phase 2: Household Appliances
 260-297 VDC
- Modify/Testing Household Appliances for DC & AC usage
 - Lighting, Refrigerator, Air Conditioner, Water Heater, Television, Computer, Rice Cooker, Microwave, Washing Machine
- Evaluate appliances during operation, stability and safet
 - Full DC
 - Full AC
 - Mixed DC & AC

DC Microgrid at adiCET

Phase 2: Testing Modified Household Appliances

Mode	Central Battery Voltage Stage	Usage
Full	297 – 260 VDC	DC use directly from Central Battery bank
Battery Boosting	260 – 250 VDC	DC from Battery bank (260 VDC) & Booster (54 VDC)
Biodiesel Generator Start	250 – 242 VDC	Generator - Charge Battery Bank - Charge Booster Batteries If ran out of fuel, AC from Utility will convert to DC
Battery dead	Below 242 VDC	Automatically switch to AC

Note: Voltage range depends on Charger Specification, battery voltage range and electrical load device requirements.

Issue to overcome

- Voltage fluctuates from the utility line, power monitoring devices •
- Communication and monitoring
- The capacitor was damaged when AC was used over the voltage setting.
- Nature Issues/ Human Issues

APEC 2025

adiCET

Smart DC Plug

Operating Principles

APEC 2025 KOREA

DC Microgrid at adiCET

Phase 3: Develop Boost Converter for Improving Stability

Biogas storage and electricity generation system -500L-Gas Storage

IoT Hardware monitoring

-Wireless data transmission

-AC/DC Measurement

- DC Boost the stability - Connect the Bio-grid system - Power distribution

-5kW Biogas generator

APEC 2025

Battery 2.4kW

DC Microgrid at adiCET

APEC 2025

adiCET

Smart Microgrid Project Development

User Layer

- Web display platform
- Settings and notifications
- Rules and Policies

Electricity trading Layer

Marketing mechanism

APEC 2025

- Trading Platform
- Blockchain and smart contracts

- Network Layer
 - IoT Systems
 - Real-Time Protocol

Database & Monitoring Layer

- Real-Time Monitoring
- Big database for Long-term statistical
- Management and notification system

Distribution Layer

- Power generation system
- Energy storage systems
- Power transmission system

www.adicet.cmru.ac.th

www.facebook.com/adicet

LVDC Researches and Standardization in Korea

Hyosung Kim, Professor Emeritus, Researcher

Kongju National University, KOREA

Date : 2025. 02. 24

I. Story of presenter

II. Case 1: DC arc research

III. Case 2: Customer-side LVDC research

I. Story of Presenter

II. Case 1: DC arc research

Proposed architecture & scope
Residence of Tier 2 & 3 levels of Multi-tier Framework in Electricity Access Area

Table 1 - Attributes of access related to electricity energy supply for households as given in the Multi-Tier framework

Attribute	Tier 2	Tier 3		
Power capacity ratings (W or daily Wh)	Minimum peak power delivery of 50 W	Minimum peak power delivery of 200 W		
	Minimum energy delivery of 200 Wh per day	Minimum energy delivery of 1 000 Wh per day		
Availability (duration)	Minimum 4 h per day; minimum 2 h in the evening	Minimum 8 h per day; minimum 3 h in the evening		
Reliability	No stated requirement	No stated requirement		
Quality	IEC Standards on EMC shall be applied	IEC Standards on EMC shall be applied		
Affordability	No stated requirement	Cost of standard consumption package of 365 kWh per year should be less than 5 % of household income		
Legality	No stated requirement	No stated requirement		
Health and Safety	No stated requirement	No stated requirement		

II. Case 1: DC arc research

Standardization of DC series arc using brass electrodes

Scope Structu	ure Projects / Publ	ications Docu	ments V	otes Mee	tings Collab	oration Platform				
Work program	me > Project: IEC T	S 63603-1 ED1								e
etail							Project			
Committee	Working Groups	Project	Leader	Current Status	Frcst Pub Date	Stability Date	IEC TS 63603	-1 ED1		
SYC LVDC	WG 1	Mr Hyos	ung KIM	ACD	2027-05		Arc Hazards and Safety in LVDC - Part 1: Series arc characteristics between brass electrodes			
listory										
Stage	Document	Downloads	Voting R	Result D	ecision Date	Target Date	Initial Project	Plan		
prePNW				2	024-03-21		Committee	Enquiry	Approval	Publicatio
PNW	SyCLVDC/146/NP	🔎 2599 kB	APPROV	ED 2	024-03-22		2025-03-19		2026-11-20	2027-05-1
PRVN				2	024-06-14	2024-06	Up-to-date Pro	oject Plan		
ACD	SyCLVDC/158/RVN	🗐 73 kB 🔑 723 kB		2	024-08-16	2025-03	Committee	Enquiry	Approval	Publicatio
CD						2025-03	2025-03-19		2026-11-20	2027-05-1

II. Case 2: Consumer-side LVDC system research

Proposed architecture & scope

- Residential houses and commercial buildings
 - Site Name: Next-Generation LVDC System Demonstration Site

• Location: Research Building of the Korea Electronics Technology Institute (KETI), Gwangju Metropolitan City

II. Case 2: Consumer-side LVDC system research

Demonstration & test site

[2층 시험전경]

II. Case 2: Consumer-side LVDC system research

LVDC Standards for Private Sector in Korea

STD. No.	Title	Propose
SPS-KETI-C0001	Electrical Safety Requirements for Low Voltage DC Consumers	KETI
SPS-KETI-C0002	Test Methods for DC Plugs and Socket-outlets for DC Consumers	KETI
SPS-KETI-C0003	Electrical Test Methods for Arc-Free DC Wall Switches for DC Consumers	KETI
SPS-KETI-C0004	Test Methods for DC Circuit Breakers for DC Consumers	KETI
SPS-KETI-C0005	Test Methods for DC Leakage Circuit Breakers for DC Consumers	KETI
SPS-KETI-C0006	Test Methods for DC Branch Circuit Switches for DC Consumers	KETI
SPS-KETI-C0007	Test Methods for DC Distribution Boards for DC Consumers	KETI
SPS-KETI-C0008	Test Methods for DC Power Conversion Devices for Low-Voltage DC Distribution System Integration	KETI
SPS-KETI-C0009	Test Methods for Arc Fault Detection Devices for Low-Voltage DC Consumers	KETI
SPS-KETI-C0010	Test Methods for Power Conversion Devices for Medium and Large Energy Storage Systems in LVDC Distribution Networks	KETI
SPS-KETI-C0011	Performance Test Methods for Power Quality Measurement Devices in LVDC Distribution Systems	KETI
SPS-KETI-C0012	Test Methods for Hybrid and Semiconductor High-Speed DC Circuit Breakers for LVDC Distribution Systems	KETI
SPS-KETI-C0013	Test Methods for Power Conversion Devices in DC Distribution Systems for Supplying Power to AC Consumers	KETI
SPS-KETI-C0014	Test Methods for Power Conversion Devices for LVDC Building Loads	KETI
SPS-KETI-C0015	Test Methods for Medium-Scale Solar Power Conversion Devices in LVDC Distribution Networks	KETI
감사합니다 !

Hyosung Kim, Professor Emeritus, Researcher

Kongju National University, KOREA

hyoskim@kongju.ac.kr

Experimental set-up

Supply Voltage [V]	25, 50, 100, 150, 200
Load Power [W]	50, 100, 200, 300, 400,
	500, 800, 1000
Opening Speed, VGap [mm/s]	10, 40, 80, 120

[Experimental setup for wall-mount switch]

[Experimental setup for socket-outlet & plug]

Series arc: current, voltage, & power

[Typical experimental waveforms of arc voltage (v_{arc}) and arc current (i_l); Supply voltage = 200 V, Load current = 5 A]

[Break-arc circuit concept]

[Arc power(p_{arc}) graph against arc current(i_{arc})]

Fixed

Moving

Series arc energy

[Arc voltage, current, and power(p_{arc}) worst case]

 $W_{\rm arc} = \int_0^{t_{\rm cxit}} p_{\rm arc} \cdot dt = \frac{P_{rate}}{t_{erit}} \int_0^{t_{exit}} (t - \frac{t^2}{t_{erit}}) dt = \frac{1}{6} P_{rate} \cdot t_{exit}$

[Arc power(p_{arc}) graph against arc current(i_{arc})]

Concept of arc-distance safe operation area

[Arc extinction distance graph according to supply voltage and load power]

[The relation of supply voltage and load power level which maintains equal arc extinction distance in LVDC system]

Series arc behavior along with gap speed

Experimental condition

Supply Voltage [V]	25, 50, 100, 150, 200
Load Power [W]	50, 100, 200, 300, 400, 500, 800, 1000
Opening Speed, V _{Gap} [mm/s]	10, 40, 80, 120
Temparature [°C]	24 (±1)
Relative Humidity [%]	55 (±5)

Opening Speed [mm/s] d) Sensitivity of arc extinction time

-1.2

-1.4

-1.6

Arc-distance safe operation area [mm]

b) Moving speed= 40 mm/s

Arc-energy safe operation area [Joule]

Arc distance < 2~3 mm

Arc energy < 250 Joule

Series arc behavior according to the electrode shape

[socket-outlet & plug]

[normal contactor]

Series arc behavior along with humidity

Series arc characteristics on inductive load

[power circuit concept]

a) Measure time constant during switch "on"

b) Measure arc extinction time during switch "off"

[normal contact electrode]

0.025

Series arc characteristics on inductive load

Series arc characteristics on inductive load

[power circuit concept]

[Experimental condition]

V _{DC} [V]	200, 400
P _{Load} [KW]	1, 2, 4
Time constant [ms]	5, 10, 20
Gap velocity [mm/s]	10, 80
Maximum gap distance [mm]	30
Inside the gap	Air

$$\Delta l_{ext_{10}mm/s} = l_{ext_{L}} - l_{ext_{R}} = 44\tau$$

[Boundary surface of supply voltage – load power according to time constanat of inductive load where the breaking arc extinction distance is 2 mm and gap speed is 10 mm/s]

Series arc characteristics on capacitive load

[power circuit concept]

[normal contact electrode]

Supply Voltage [V]	50, 200, 400
Load Current [A]	1, 2, 4, 8, 12
Opening Speed [mm/s]	10, 123.5
Atmospheric conditions	Air

Arcless capacitance boundary

[Arcless critical capacitance(Ccrit) trend line graph according to load current]

Chaotic characteristics on capacitive load ; bifurcation of arc extinction distance

[Arc extinction distance according to relative parallel capacitance]

Chaotic characteristics on capacitive load ; bifurcation on arc extinction distance

[Bifurcation behavior of arc extinction distance according to relative parallel capacitance]

Resonance characteristics of capacitive load

[Power system description]

[resonance of break arc]

Standardization of DC series arc using brass electrodes

Scope Structu	ure Projects / Publ	ications Docu	ments V	otes Mee	tings Collab	oration Platform				
Work program	me > Project: IEC T	S 63603-1 ED1								е
etail							Project			
Committee	Working Groups	Project	Leader	Current Status	Frcst Pub Date	Stability Date	IEC TS 63603	-1 ED1		
SYC LVDC	WG 1	Mr Hyos	ung KIM	ACD	2027-05		Arc Hazards a characteristic	and Safety in s between b	LVDC - Part 1: rass electrodes	Series arc
listory										
Stage	Document	Downloads	Voting R	Result D	ecision Date	Target Date	Initial Project	Plan		
prePNW				2	024-03-21		Committee	Enquiry	Approval	Publicatio
PNW	SyCLVDC/146/NP	🔎 2599 kB	APPROV	ED 2	024-03-22		2025-03-19		2026-11-20	2027-05-1
PRVN				2	024-06-14	2024-06	Up-to-date Pro-	oject Plan		
ACD	SyCLVDC/158/RVN	🗐 73 kB 🔑 723 kB		2	024-08-16	2025-03	Committee	Enquiry	Approval	Publicatio
CD						2025-03	2025-03-19		2026-11-20	2027-05-1

Proposed architecture & scope

- Residential houses and commercial buildings
 - Site Name: Next-Generation LVDC System Demonstration Site

• Location: Research Building of the Korea Electronics Technology Institute (KETI), Gwangju Metropolitan City

1. AC/DC converter for power quality simulation

Function

- Power quality simulation : Sag, Swell, Instantaneous interruption, Voltage ripple, Over voltage, Under voltage
- Current limiting in case of short circuit

Specification

- Input : 380Vac, Output : 750Vdc, Capacity : 500kW
- 3-Level NPC topology
- Current limiting 1,000A, Current limiting time 1s

[AC/DC Converter]

2. Multi channel DC/DC converter

- Function
 - DC Power supply
 - ESS connection
 - PV connection

Specification

- Input voltage : 750Vdc±5%, Capacity : 20kW Efficiency: 98%
- 4 Channel
- o Output(2 channel) : 380Vdc(5kW, 2channel)
- o ESS: 50Vdc(3kW)
- o PV:300V~380Vdc(5kW)

[Multi channel converter prototype]

3. DC swithes for consumer

Function

- Branch circuit On/Off
- Overcurrent and short-circuit current protection

Specification

- Input voltage : 380Vdc, Rated current: 10A
- Operation time : 18us \downarrow

[Prototype]

4. DC leakage current circuit breaker

• Function

- Protection for electric shock and leakage current
- Overcurrent protection
- AUX output

(smart distribution panel status display)

- Specification
 - DC380V, 20A, 1kA
 - Rated sensitivity current 15mA

[Current sensor]

[Prototype]

5. DC arc detection device

• Function

- DC arc fault detection and blocking
- Arc status monitoring

Specification

- DC arc fault detection time : 200ms \downarrow
- 380V DC 35A (Sensor all-in-on DC arc detection device)
- 380V DC 100A
- Branch circuit arc fault detection
- Integrated DC sensor and high frequency sensor

[380V DC 100A]

6. DC circuit breaker, DC Plug, DC S/W

- Function
 - No-arc operation
- Specification
 - Rated V, I for DC circuit breaker : 440Vdc, 50/100A
 - Rated V, I for plug : 400Vdc, 10/16A
 - Rated V, I for S/W : 400Vdc, 10A

7.250kW DAB converter for ESS

Function

- Charging&Discharging connected to DC distribution
- Stand-alone operation during blackout
- Droop control

Specification

- Input : 750V_DC, Output : $600V_{DC}$
- Capacity : 250kW (32kW * 8STACK)

8. 500kW DAB converter for DC distribution

- Function
 - DC power supply to the customer
 - Temporary current limitation in case of short circuit fault
 - Droop control
- Specification
 - Input V : 750V_{DC'} Output V : 380V_{DC}
 - Capacity : 500kW (50kW * 10 STACK)

9. PV Converter

- Function
 - DC distribution connection

Specification

- Input V: 470Vdc, Output V : 750Vdc
- Input Range : 290Vdc~ 580Vdc
- Capacity : 250kW (50kW * 5STACK)

[DC/DC converter prototype]

10. DC Micro Grid circuit breaker

• Function

- DC Micro-grid system fault protection
- DC Micro-grid system measurement, protection and communication functions
- High speed breaking 10ms
- Specification
 - Rated V : 1000Vdc
- Rated breaking current : ~ 10kA
- Breaking time : 10ms \downarrow

[500/250kW Hybrid circuit breaker]

[Relay for DC circuit breaker}

[50kW Semiconductor circuit breaker]

[Distribution for DC Grid]

11. DC-PQM

Function

- Power quality measurement for DC distribution
- → Over Voltage, Voltage Sag, Voltage Swell, Voltage Ripple Instantaneous Interruption
- Fault detection for DC distribution and GPS time synchronization

Specification

- Voltage measurement range : 100V 1,000V
- Current measurement range : 0A 1,500A

12. Interlinking converter

- Function
 - Interconnection of AC and DC grid
 - 3phase 380Vac output / Voltage balancing control
 - 750Vdc output / DC voltage control

[Interlinking converter prototype]

[DC-PQM and PQM server system]

Power quality assesment

DC Power Grid Power Quality

Nominal Voltage (V _n)	$750V \pm 75V$ (0.9V _n ≤ V ≤ 1.1V _n)	 Rated Voltage : 750 V (=V_n) Operating Voltage Range : 675V ≤ V ≤ 825V (0.9V_n ≤ V ≤ 1.1V_n)
Voltage sag	0.8V _n ≤ V < 0.9V _n • 600V ≤ V < 675V • t < 1min	 Sag Range : 600V ≤ V < 675V (0.8V_n ≤ V < 0.9V_n) Duration : 1min ↓ Fault: 1min ↑
Voltage swell	$1.1V_n < V \le 1.2V_n$ • 825V < V \le 900V • t < 1min	 Swell Voltage Range : 825V < V ≤ 900V (1.1V_n < V ≤ 1.2V_n) Duration : 1min ↓ Fault : 1min ↑
Over- voltage	V > 1.2V _n • V > 900V • Trip when detected	 Over voltage Range : V > 900V (V > 1.2V_n) Duration : - Fault : Overvoltage detection immediately
Voltage ripple	Vripple < $\pm 2.5\%$	 Voltage ripple Range : 731.25V ≤ V ≤ 768.75V (0.975V_n ≤ V ≤ 1.025V_n) Maintain normal operation as long as the voltage ripple does not exceed the range Fault after 10 seconds if voltage ripple is out of ranges
Instantaneous Interruption	500ms ↓	Stop immediately

Power quality of customer

- Voltage Range : 380Vdc±5%
- Voltage Ripple : 1% ↓

Demonstration & test site

[2층 시험전경]

LVDC Standards for Private Sector in Korea

STD. No.	Title	Propose
SPS-KETI-C0001	Electrical Safety Requirements for Low Voltage DC Consumers	KETI
SPS-KETI-C0002	Test Methods for DC Plugs and Socket-outlets for DC Consumers	KETI
SPS-KETI-C0003	Electrical Test Methods for Arc-Free DC Wall Switches for DC Consumers	KETI
SPS-KETI-C0004	Test Methods for DC Circuit Breakers for DC Consumers	KETI
SPS-KETI-C0005	Test Methods for DC Leakage Circuit Breakers for DC Consumers	KETI
SPS-KETI-C0006	Test Methods for DC Branch Circuit Switches for DC Consumers	KETI
SPS-KETI-C0007	Test Methods for DC Distribution Boards for DC Consumers	KETI
SPS-KETI-C0008	Test Methods for DC Power Conversion Devices for Low-Voltage DC Distribution System Integration	KETI
SPS-KETI-C0009	Test Methods for Arc Fault Detection Devices for Low-Voltage DC Consumers	KETI
SPS-KETI-C0010	Test Methods for Power Conversion Devices for Medium and Large Energy Storage Systems in LVDC Distribution Networks	KETI
SPS-KETI-C0011	Performance Test Methods for Power Quality Measurement Devices in LVDC Distribution Systems	KETI
SPS-KETI-C0012	Test Methods for Hybrid and Semiconductor High-Speed DC Circuit Breakers for LVDC Distribution Systems	KETI
SPS-KETI-C0013	Test Methods for Power Conversion Devices in DC Distribution Systems for Supplying Power to AC Consumers	KETI
SPS-KETI-C0014	Test Methods for Power Conversion Devices for LVDC Building Loads	KETI
SPS-KETI-C0015	Test Methods for Medium-Scale Solar Power Conversion Devices in LVDC Distribution Networks	KETI

Bloomenergy[®]

Microgrid solutions of Bloom Energy

Inki Choi

First Senior Officials Meeting, 2025: APEC Energy Working Group 69 Feb. 2025 Gyeongju, Republic of Korea

Bloomenergy

Bloomenergy^{*}

Agenda

1. Bloom Energy

2. Bloom's Portfolio Tree

3. Bloom's Solutions

4. Cast study

 \rightarrow

Bloomenergy[•]

Inki Choi

Senior Manager, Strategy & Marketing

2025-Present, Senior Manager, Strategy & Marketing, Bloom Energy, Korea 2016-2024, Business Strategy/Sales/Project Management Manager, KC Cottrell, Korea 2011-2015, Strategic Planning Analyst/Engineer, DB Group (Formerly Dongbu Group), Korea 2007-2010, M.S in Aerospace engineering, California Institute of Technology, USA 1998-2006 B.S. in Mechanical engineering, Seoul National University, Korea

1. Bloom Energy_1) Overview

Bloomenergy[•]

Bloom Energy at a glance

Mission: To make clean, reliable energy affordable for everyone in the world.

1. Bloom Energy_2) Customers

Bloomenergy^{*}

Market Segments Served

Diverse customer ecosystem with Fortune 500 customers

2. Bloom's Portfolio Tree

*. Combined Heat & Power **. Carbon Capture, Utilization & Storage Bloomenergy[®]

3. Bloom's Solutions

Bloomenergy[•]

4. Case Study

Bloomenergy^{*}

Parent Organization	Location	Industry	Bloom Installation
California Institute of Technology (Caltech)	Pasadena, CA, USA	Colleges & Universities	4.2 MW across 5 sites on campus with Advanced Bloom Microgrid

Milestones

2009	2015-2019	2021
First Installation 1MW Primary Power	Additional 2MW Primary Power	Additional 1.2MW Advanced Bloom Microgrid

Sustainability Metrics for the 1.2MW Microgrid

Metrics	Since 2021 (- Nov. 2023)
Avoided Downtime	4 Outages; ~6.5 Hours
Longest Outage Duration	~6 Hours
$(CO_2 Reduction (lbs.) $	11,157,176
Total kWh Delivered	40,780,106
Gallons of Water Saved per MWh	2,304

Power Supply through a Utility Outage

----- Critical Load Profile fulfilled by Bloom al 8

Successes and Challenges to Investment

Santiago Barcón PQ Barcon Mexico

Contents

- Mexico
- Challenges
- Opportunities

- Most of the Systems installed had been AC
- Little coordination between state agencies and the state-owned utility CFE
- Before the Energy Reform in 2014 CFE was in charge and decided how to install the rural electrification systems
- But even before that States won the "right" to participate and the process became cumbersome and, in some cases, aimed to win votes
- AC systems are more familiar and spare parts, mainly motors, easily available

- Demonstrate that DC systems are better in the long run, even in some cases more expensive
- Train young engineers in the DC systems installation procedures and operation
- Built at least 10 projects in different areas
- Get finance at good interest rates (loans in Mexico are at 15 % when inflation is at 4 %)
- Find 9nsurance mechanisms

- Use Academia to develop short and easy to understand installations
- Show success histories from other economies
- Local integration of DC inverters
- Create network of service centers
- Tie x % of home distributed generation saving to rural dc systems
- BESS
- 100 % tax deduction for donated DC systems

Session 4: Case Studies on Small Island Microgrids, Flexible DC Power Systems, and Renewable Energy Integration

Isolated Community PV/Biogas Microgrid

Asst. Prof. Dr. Hathaithip Sintuya Asst. Prof. Dr. Worajit Setthapun Assoc. Prof. Dr. Wattanapong Rakwichian

The APEC Workshop on Driving Trade & Investment for DC Power Systems and Microgrid Frameworks Through Public Policy Alignment Feb 24-25, 2025 Hwabaek Convention Center (HICO), Gyeongju, Republic of Korea

Chiang Mai Rajabhat University 🚺

Rank 601-800 in the world Rank 16 in Thailand Rank 1 in Rajabhat Universities

From THE Impact Ranking 2024 (Sustainable Development Goal: SDGs)

CHIANG MAI RAJABHAT UNIVERSITY Sustainable Development Goals

Chiang Mai Rajabhat University

Mae Rim Green Campus, Chaing Mai, Thailand

Chiang Mai World Green City:

Sustainable-Green-Smart Community via Integration of Renewable Energy & Green Technology

Asian Development College for Community Economy and

Technology (adiCET): Developing the community through the integration of graduate-level teaching, research, and academic services to enhance the quality of life and the local economy.

adiCET - Chiang Mai World Green City

#2 Zero Waste - Bioenergy Cycle #3 Smart Community Development

Chiang Mai World Green City: Living Laboratory & Learning Park

700 kW Community Power

Office Zone adiCET Prosumer Community Microgrid (PCM) adiCET Cafe Meeting 0000 Microgrid Controller Solar Farm **PV Ground Station** Grid Battery Guest House Zone **Dinning Room** Student Resident Zone

adiCET Full Feeder Microgrid Testbed and Experiment

adiCET

Isolated Microgrid

Isolate Microgrid Community PV-BioGrid Model

The load profile of the building that consumes from solar energy was verified to shift the load to be consistent with the dynamic load of the building in the bus load. The AC bus community load was divided into 2 zones AC BUS 2: student residential zone *off peak day time* load with peak load during the morning, evening AC BUS 3: office and small business zone *daytime load* with peak load during the daytime.

adiCET

Isolated Community PV-battery-Biogas Microgrid Model

Isolated Community PV-battery-Biogas Microgrid Model: the Isolated Community PV-battery-Biogas Microgrid Model can sufficiently meet the electricity demands, providing stability and reliability.

Isolated Community PV-battery Microgrid Model

Isolated Community PV-Battery Microgrid Model: the Isolated Community PV-Battery Microgrid Model can sufficiently meet electricity demands, providing stability and reliability without using electricity from biogas.

Isolated Community PV-Wind-Battery Microgrid Model

Battery price decreased 700% compared to 10 years ago Isolated Community PV-Wind-Battery Microgrid Model can be used for the Optimization

The Isolated Community PV-Wind-Battery Microgrid Model, which utilizes a Hybrid Solar and Wind system combined with Battery Storage, the Energy Management System (EMS) to manage Battery Storage for load shifting and shaving Load. This process helps shift Load Balance to Pattern Profile Base Load.

Campus Power Distribution

Smart Campus - Chiang Mai Rajabhat University

Smart Street Lighting

EV Conversion

V2G

OVERVIEW CMRU SMART CAMPUS

Maerim

Rooftop: 876 kWp Carport: 122 kWp

Wiang Bua Rooftop : 260 kWp Carport : 130 kWp

Rooftop and Carport Solar

ENZY Energy Management System

Smart Street Lighting Smart Street Light System Smart Street Light with IoT 309 Sets

Battery Energy Storage

Size : 100 kW/200 kWh

Battery Energy Storage

EV Charger

EV Car

EV Golf Cart 14 seats, 7.5 kW/72V - 2 units

EV Charger Pulsar Plus : Type2, 7.4 kW- 2 Units

> Quasar : CHAdeMo DC Bi-Directional Charge 7.4kW, Discharge 7.2 kW - 1 unit

ROOFTOP SOLAR (MAE RIM)

CARPORT SOLAR (MAE RIM)

CARPORT SOLAR (WIANG BUA)

ROOFTOP SOLAR (MAE RIM)

SMART STREET LIGHT

PARADOX ENGINEERING		Device Control This we applicative evalutive yes to cannot and insetting year devices in real-times an Alago	B 🕒 🚱 💽 1000	NG.PHANUPONG 0	PARADOX ENGINEERING	۲	Energy Repo	et dice southing boosts and prover co	encertalism of your highling devices			POXENCI.PHANUPOP
Zones	۰	EDAT Chang Mai Instituted +7007 at	Q Light_R05-M09 🔿	= 0 K	Zones	•	CGAT Chian	g Mai > Light_R01-M	102 104.58			
L DAU, DROUP, C7 AF40	constant."	8	Lighting Management		Device only G. Lund, Rest-Mate G. Lund, Rest-Mate	caded.	Report Age Summary	a Day	= 2024	* Apr		8 Q &
	- 1	R	Castor MAC B Callering MAC	FEDC/7A/7D/JP/JRK %	C Light_R01-M08 C Light_R01-M10		Summary					
DAL_DROUP_C74040			Connected	2024-04-12.10.20 +07	© Light_R01-A112 © Light_R01-A112	1	They	Active temps	Total working hours	2	Ang working boors	Tot. Consumption
-1 640,0800P,079248			CUSTOM MEASUREMENTS	COMMINDS	P Light_R01-M13 P Light_R01-M14		20240401	308	6067-45 h		19:42 N	498217 17%
- DALL BROOF, CT 8448		B DNBOARD, LEUMINACE, BINISOR,	Active prover (M) 3.8	0% Demong ideal	Cupic, Hor Anno		28240402	273	5830.37 h		21.21 h	623873 Wh
-1 DALL BROUP CT46-00		P BASE DEVICE LIR, From OL, RIS MON	V mo (V) 242.4 1 mo (A) 6.009		C Light_RotAlia		28240403	308	6294.17 h		20.26 h	750423 Wh
LOAD-NEXT LOAD-NEL		01	Total survey, have in		C Lanc Ren Alto		21240464	308	5662.60 h		21:38.6	668112 Wh
• Sensor	2		~	0-	© Light_H014821		20240405	308	6653 48 h		21:37 %	466438 V/h
B Sale device		Contra Co	00000	and it	© Light_R014024		20240400	308	6666-23 h		21.39 h	420671 Viti
♥ Siguidant University			CALL INCOME.		Q Light_R01405	1	21240407	308	6649-30 h		21 35 h	864625 Wh
9 Tubedeeted	1				P Len_R02L00		20240408	30.6	6641.0 h		21.34 h	678565 V/h
built from	-	Ught Direning Status			Search device						Page 1 +	Понта рак рада: 25 ж. 1 - 11 af 11 с

SMART STREET LIGHT

EGAT

ENZY ENERGY MANAGEMENT SYSTEM

12.00

15.66

11.18

957.82

externandly prevented

องาศารธรรมใน สาขารงรรณ์ องาศารธรรมใน สาขารโรกรร

100.00 300.0 10.00

22.43

200.00 200.42

13.17

10.41

-

100 100 100 100				1,363,65 KW		8,742.5 110
		00 *	84.77 kW		63,754.39 108	
Branches	Parate Gammanian (1981)	Interpretation (1995)	Larger Plane (199)	Brange Consumption (HMM)	110 Prote District	(11114-1111)
and our	0.05	50.97	55.88	391	288	104
historia	1.21	24.56	44.18	514	383	121
(second	0.37	6.03	6.76	75	52	23
Red	2.19	46.59	24.61	286	942	124
nanda	0.03	28.44	30.91	141	96	45
Terms 4	0.53	28.15	9.03	142	85	57
annada	0.07	17.47	9.51	80	87	24
rulars) ru.?	0	0	0	.0	0	0
	N.44	00.00	13.01	244		

Split Type farmp. (*C Off 0 **Air Canditioner1 Control** 29.33 35.61 6.85 Tot Terrige. (*C) Home in the CO2 (ppre) Scanos. 31,21 34.90 (Own

- **Overview Dashboard** ٠
- **Generation &** .

Consumption Overview

- Optimized air cond. • (Temp vs Kw Graph)
- Monthly energy report

Microgrid model for electricity generation in rural villages

Thank you

hathaithip.nin@g.cmru.ac.th

DC Power Technologies Promote Renewable Energy Integration

Chen Chen

Global Energy Interconnection Economic and Technology Research Institute Feb. 2025

New Challenges along with Energy Transition

The APEC economies are pivotal in the global energy transition.

- ▶ Renewable share: 43% in installed capacity, 28% in electricity generation (2023).
- > APEC economies contribute more than 60% to global renewable installed capacity and generation.
- New challenges to traditional power system: Integration of inverter-based wind and solar power. Recent advancements in DC technologies are providing various technical supports in promoting renewable energy development and integration, especially in renewable energy exploitation, longdistance transmission, and flexible accommodation.

Installed capacity and ratio of renewables of APEC economies

New challenges along with energy transition

Rapid Development of DC Technologies

Comparison of 4 types of DC technologies that have been applied in engineering projects (LCC-HVDC, VSC-DC, HVDC Grid and DC Microgrid).

DC technology	Application Scenarios	Application Maturity	Operational Flexibility	Cost of Equipment and Construction
LCC-HVDC	Long-distance power transmission, AC grids interconnection, etc.	High	Low	Low
VSC-DC	Renewable transmission, flexible interconnection between AC grids, etc.	Moderately High	Moderately High	Moderately High
HVDC Grid	Networking of renewable energy bases, etc.	Moderate	High	High
DC Microgrid	DC loads directly supplied by distributed renewables, etc.	Moderate	High	Moderately High (compared to AC microgrid)

Mature LCC-HVDC technology

- > LCC-HVDC technology has been extensively applied in engineering projects.
- Highest technical standard reaches ±800/1100kV UHVDC. As of 2024, China has 18 operational LCC-UHVDC projects, with the maximum transmission capacity reaching 12GW and the longest transmission distance exceeding 3300km.
- LCC-HVDC technology utilizes semi-controlled devices. As a result, the operational power and voltage cannot be independently controlled, posing a risk of commutation failure.

Milestones of LCC-UHVDC transmission technology

Changji-Guquan ±1100kV/12GW UHVDC project

Growing applications of VSC-DC technology

- VSC-DC technology enables rapid and independent control of operational power and voltage. It is progressively being applied in scenarios such as power transmission from onshore and offshore renewable energy bases, flexible interconnection of AC grids, etc.
 - VSC-HVDC transmission provides voltage and frequency support to both sending and receiving AC systems, making it suitable for wind and solar transmission. Recently, voltage levels and capacities of VSC-HVDC transmission have continued to increase. The world's first VSC-UHVDC project, the Gansu-Zhejiang UHVDC transmission project (±800kV/8GW), is currently under construction.

Case I:

Rudong offshore wind VSC-HVDC transmission project: The world's highest voltage (±400kV) and largest transmission capacity (1100MW) offshore VSC-HVDC system.

Case II: Baihetan-Jiangsu UHVDC transmission project: The world's first hybrid UHVDC project combining LCC- and VSC- HVDC, distributes half of the transmitted power to each technique at the receiving end.

Growing applications of VSC-DC technology

- VSC-DC interconnection between AC grids: To address the large-scale integration of distributed PV into AC distribution networks, VSC-DC technology is employed to interconnect different power supply areas.
- This approach transforms the traditional tree-like structure of AC distribution grids, enabling flexible and controllable transfer of distributed PV power between different areas. Therefore, reverse power flow from the distribution network to the transmission grid can be effectively prevented.

Case:

Zhejiang Haining distribution network VSC-DC

interconnection project: 10kV and 20kV distribution networks are interconnected through medium-voltage VSC-DC interconnection. This allows the surplus PV power from the 20kV areas to be transferred directly to the 10kV areas. Such an approach prevents the reverse power flow from moving up to the 110kV transmission grid, promoting the local accommodation of distributed PV generation within the distribution network.

HVDC Grid demonstration projects

- Based on VSC-HVDC technology, HVDC Grid technology connects multiple converter stations into a network. Utilizing the networking advantages of VSC-DC technology, HVDC Grid enhances system operational flexibility through dynamic adjustment of network topology.
- Demonstration projects for networking renewable energy bases have been put into operation, enabling efficient and stable transmission with multi-renewable energy complementation.
- Challenges for HVDC Grid application and construction include reducing the costs of DC circuit breakers, energy dissipation devices, and DC/DC converters, as well as addressing the complexities of dispatching, control, and protection strategies.

Case:

Zhangbei ±500kV VSC-HVDC Grid project: Using ±500kV HVDC lines, the HVDC Grid connects wind, PV, and pumped hydro storage. It comprises two sending-end converter stations (3GW / 1.5GW), one regulating station (1.5GW), and one receiving-end station (3GW). These components form a four-terminal VSC-HVDC Grid using a "hand-in-hand" ring connection, enabling stable multi-energy complementary. This system can annually supply 14TWh of green electricity to Beijing, equivalent to one-tenth of the city's annual electricity consumption.

PEC 2025

Structure of Zhangbei ±500kV VSC-HVDC Grid

Expanding application scenarios of DC Microgrid technology

- DC Microgrid technology: Microgrids also exhibit a DC-oriented development trend in the integration of renewables, energy storage, and DC loads. By using VSC-DC technology to connect and control all these DC items, this DC Microgrid can reduce AC-DC conversion losses and enable functionalities such as flexible power flow distribution, smooth switching between grid-connected and islanded modes, and system black starts.
- > DC Microgrids have been constructed in industrial parks, buildings, islands, and rural areas.

Industrial Park Case: Electrolytic aluminum factory in Inner Mongolia

Electrolytic aluminum is stable, high-capacity DC load, which can be directly supplied by PV generated DC power through low-voltage DC Microgrid. The total installed capacity of the PV in the factory is 14.72MW, which, through a DC Microgrid and a DC control system, supplies four sets of electrolytic aluminum equipment (two sets at 3.6MW each and two sets at 4.5MW each).

EC 2025

Using ±375V VSC-DC technology, four distribution stations and one parking lot within a 1.5km range in the Meizhou Island are interconnected to form a 5-terminal ring-type DC Microgrid. This enables power mutual transmission, PV orderly accommodation, remote control of low-voltage loads, and participation of energy storage in demand response.

Observations and Suggestions

> AC/DC hybrid will be the fundamental form of future power system

- Various DC power technologies have rapidly developed and played a crucial role in integrating renewable energy. However, due to limitations in technology maturity, construction cost, and technical standards, constructing "DC Power Systems" faces challenges.
- Traditional AC systems are large in scale, technologically mature, and equipped with reliable devices. DC technologies are also evolving towards better adaptation to AC power systems. AC/DC hybrid systems will be the fundamental form for future high share renewable energy power systems. Optimal technical and economic combinations can be achieved through integration of multiple technologies.

Onshore renewables transmission techniques

Offshore renewables transmission techniques

Observations and Suggestions

> Innovations and future applications of DC technologies

In the progress of energy transition, DC technologies and equipment will develop towards **more reliable**, **flexible**, **cost-effective**, **and intelligent**, promoting the safe and stable operation of power systems with high share of renewable energy. Noteworthy innovations include:

Performances Improvement and Cost Reduction of VSC-DC Equipment	 Improve key equipment performances such as the current-carrying capacity of VSC-DC inverters and the breaking capacity of DC circuit breakers. Reduce the cost of VSC-DC equipment across all voltage levels, making it more cost-competitive, especially for distribution networks and microgrids.
Innovations in HVDC Grid Networking and Operation	• Apart from advancements in VSC-DC inverters and DC breakers, the development of HVDC Grids requires systematic innovation in dispatch and control, modeling and simulation, condition analysis, protection strategies, fault defense, etc. This will facilitate breakthroughs in networking for onshore and offshore renewable energy bases.
Wide Application of Grid-forming Technology	• By optimizing control strategies and enhancing device overload capacity, VSC-DC inverters can exhibit similar external characteristics to synchronous generators, which will improve renewable energy integration and system operational stability. Grid-forming technology will be widely applied in renewable energy bases integration and supporting the system at key nodes.

Observations and Suggestions

> Promote the discussion and formulation of DC operating voltage technical standards

- Currently, there is no unified technical standard for DC operating voltages, causing poor equipment compatibility and high R&D costs.
- Suggestion: Promote discussions and the formulation of DC operating voltage technical standards globally, refining voltage sequences for different scenarios (such as low-voltage for household use, medium-voltage for distribution networks, and high-voltage for transmission).

Leverage the advantages of AI, using the digital and intelligent development of DC technologies to drive the digital and intelligent transformation of the entire power system.

- DC technology facilitates the large-scale integration of renewable energy, characterized by multiple dispatching objects, operational modes, and control parameters. These characteristics are highly suitable for the extensive application of AI technologies.
- **Suggestion:** Use the AI applications for DC technologies as a breakthrough point to promote the digital and intelligent transformation of the entire power system, driving this transformation through new applications and technologies in different scenarios.

Thank you for listening !

Chen Chen

Global Energy Interconnection Economic and Technology Research Institute

Feb. 2025

R&D Activities for Hybrid AC/DC Distribution Network(MVDC Grid) Technology in ROK(Republic of Korea)

Contents

- Overview and Necessity of MVDC
- MVDC R&D Activities in R.O.K.
- MVDC Technology Development and Roadmap

- MVDC Standardization and Policy Direction
- Challenges and Future Outlook

Key Drivers for MVDC Grid

- We aims for an All-Electric Society(AES) that requires
 - Integration of renewables and distributed energy;
 - Support for electric vehicles and storage;
 - Meeting rising demand;
 - Efficient coupling of energy sectors (electricity, gas, heat);
 - Ensuring reliable, high-quality supply amid growing uncertainties

- An AES need advanced grid solutions that are
 - sustainable with a high-level of renewables and escalating demand;
 - efficient for integration of new technologies and other sectors;
 - flexible, controllable and resilient under growing uncertainties

Key Drivers for MVDC Grid

- Renewable energy (RE) target has progressively increased towards being carbon neutral by 2050
 - ✓ RE generation share goal: 20% (2030) → 30-35% (2040) → 60-70% (2050)
 - ✓ Currently, RE share is 7%, 75% of which is small-sized

Key Drivers for MVDC Grid

RE Adoption Issues

MVDC Grid

- Medium Voltage Grid is a central herb that powers our communities, and integrates a variety of new technologies and energy sectors.
- MVDC Grid can provide and innovative platform to accelerate the path to decarbonized energy systems.

Source: MVDC Grid for All-Electric Society, IEC MSB White Paper Proposal, 2024.4.17.

MVDC Grid

Network Utilization

MVDC Grid

Facilitated RE Interconnection

Simple structure, easy collection of multi-sources, improved efficiency and longer power transfer

	MVAC	MVDC
Voltage	13.2kVac	18.7kVdc
Max Power	40MW	100MW
Max delivery	21km (at 40MW)	59km (at 40MW)
Loss	-	1.9~4.7% less

Simulation with 13.2kV AC and 18.7kV DC feeders in Korea
 Distribution line type: ACSR-OC 240mm²

154kV_{AC} connection can be avoided for 40 to 100MW

MVDC Projects

Region	Title	Description	Purpose
Europe	Angle-DC Project, UK	$\pm 27 \text{kV}$ back-to-back interconnection of Anglesey and North Wales.	Increasing power transfer between two regions.
	FEN Research Campus, Germany	multi-terminal ± 2.5 kV grid in Aachen university.	Testing MVDC converters & multi-terminal operations.
	Network Equilibrium, Western Power Distribution(WPD), UK	A 20MW back to back converter linking two different 33kV networks.	Controlling power flow between two networks to improve utilization of the networks.
	Tjaereborg Onshore Wind Project, Denmark	4.3km 9kV DC link between onshore wind farm and AC grid	Demonstrating grid integration of offshore wind farm.
Asia	Tangjiawan Science Park, Zhuhai, China	3-terminal ± 10 kV grid with PVs and batteries	Piloting 3-terminal configuration and grid operations.
	Baolong Industrial Park, Shenzhen, China	$\pm 10 \text{kV}$ grid linking two S/Ss, AC sensitive loads at MV, and AC/DC microgrids at LV	Piloting S/Ss interconnection and MVDC grid operations.
	MVDC Distribution, Japan	1.5kV/380V connection, microgrid of solar, wind, battery and DC loads	Piloting MV/LV interconnections and grid engineering.
	MVDC Tie Pilot, KEPCO, Korea	±35kV 30MW DC circuit	Testing operation with current AC lines and equipment.
America	Eagle Pass, Rapid City, Blackwater, etc., USA	Back-to-back applications (\pm 13kV, \pm 15.9kV, \pm 21 kV, \pm 31 kV, 57 kV, and 80 kV and power ranges from 36 MW up to 350 MW.)	Interconnecting two asynchronous grids.
	Mackinac Project, USA	200MW converter station operating with \pm 71 kV	Controlling power flow and voltages between two regions in the same grid.
	Multi-terminal Grids	MV-LV Integration	Renewable Energy Transmission

MVDC Grid R&D Initiative in R.O.K.

To develop MVDC core technology for AC/DC hybrid distribution grid operation in 2030, aiming to deal with the surging demand for grid-connection of distributed energy resources

	Period	2022~2028 (7yrs)	Budget \$222 million (Gov. \$159M, PS \$63M)
Advanced AC/DC Hybrid Distribution Network	Vision	Contributing to economic growth by responding to growing electricity demand and achieving government goal for renewable energy	
R&D Project	Purpose	Dealing with growing gri	d-connected DERs and stabilize distribution grid via MVDC technology

Objectives & KPIs

MVDC core technology for AC/DC hybrid distribution grid in 2030

• Grid connection demand

Improve DER connection limit by 60%Improve grid availability by 30%

- Efficient operation
- Reduce power conversion loss by 10%
- Fault-robust operation: 90%
- Limit voltage variations within 3%

• Public acceptance

- Create national standards
- Meet EMF safety standards
- Reduce size by over 20%

Source: Korea Energy Technology Evaluation and Planning Institute

MVDC Grid R&D Initiative in R.O.K.

Source: Korea Energy Technology Evaluation and Planning Institute

MVDC Grid R&D Initiative in R.O.K.

Cat.	Sub-Projects	Scope
Compo- nents	MV DC-DC Converter Station	DC ±20kV 20MW modular multi-level converter (MMC) station
	MV-LV DC Converters	DC 20kV/1.5kV 2MW modular converter: bi-directional power flow
	Multi-terminal (MT) Control Syst. & Converter Station Engineering	 MT MVDC integrated control & operation, MV AC-DC control & protection MVDC converter station engineering
	MV DC Circuit Breakers	42kV 9kA DC hybrid circuit breakers (Commutation & inverse current injection types)
	MVDC Protection Devices	 Switches, disconnect switches, and arresters: (SW) Rat. V. 42kVdc, lifecycle > 5,000, (DS) Rat. V. 42kVdc, lifecycle > 2,000, (AR) Discharge curt. 10kA, Impact curt. 100kA Varistor V. 250V/mm
	Measurement, Diagnosis & Evaluations for Converter Stations	 42kV/500A sensors, IEDs & platforms for monitoring, diagnosis & asset mgmt. (IEC 61850 Ed. 2) Reliability evaluation algorithms & standards, etc.
Grid	Grid Design and Analysis	 AC-DC hybrid grid planning & design, modeling & analysis, and protection & grounding Local DC grids design (railways, EV charging network, etc.)
	Grid Operating Systems	 AC-DC hybrid grid operating systems for utility & community microgrid Network & energy management, protection coordination, black start, grid support
	Grid Safety Management	AC-DC hybrid grid safety operating environments using digital twins
	Test & Evaluation for Grid Operation Syst.	 Test/evaluation tech. & platform for AC-DC hybrid grid operation systems Real-time simulation environment, performance tests, distribution grid operation code, etc.
Test	Testbed Pre-construction study	 Technical requirements for AC-DC hybrid grid testbed, and MVDC ecosystem analysis
bed	AC-DC Hybrid Distr. Grid Testbed	 AC-DC hybrid grid testbeds & total operating center for field evaluations

Source: Korea Energy Technology Evaluation and Planning Institute

Step Up to Field Trials

Field-test Grid and Business Applications for Real-World Readiness

< Islands Decarbonization >

< Multi-terminal Distribution Grid >

11m + a

2.4m + a

< Renewables Integration >

< EV Charging Network >

DC Standardization Status

SDO	Activity	Description
IEC	 TC 115 TC 14/17/20/36/37/99, SC 17A/17C/22F/36A SyC LVDC MSB (SWG 21) 	 HVDC transmission (TSs and TRs only) HVDC converter, cables, switchgear, etc. (ISs, TSs, and TRs) LVDC systems level (1 IS, and 7 documents in progress) White paper (MVDC grids for an All-Electric-Society) in progress
CIGRE	 A3: High voltage equipment B1: Insulated cables B4: HVDC and power electronics C6: Active distribution systems and distributed energy resources 	 MVDC and some HVDC equipment TB 852: DC cables up to 800kV HVDC systems and advanced power electronics C6/B4 TB 875: MVDC Distribution Systems
CIRED	 WG 2019-1: DC distributin networks WG 2021-1: DC and hybrid AC/DC 	 WG 2019 final report for DC networks on distribution level DC components, planning & operation, standardization, regulatory framework, and MV & LV distr. network use cases
IEEE	 1709: DC power systems on ships 2974: System commissioning of MV and LV DC distribution network WGI10: High Voltage Direct Current LVSD/37.17 	 IS for 1-35kV MVDC on ships IS for system commissioning for MV/LV distr. Network ISs for HVDC components and systems IS for general purpose LVDC circuit breaker

Standardization Efforts

- MVDC Grid selected for IEC MSB 2025 White Paper Project (April-May, 2024)
- SEG Application submitted to IEC SMB and under review (September, 2024)
- SEG Establishment approved at IEC SMB meeting (October, 2024)
- A new TC to be considered after SEG's in-depth Analysis (October, 2025)

Challenges

Distributed Power System Research Center 감사합니다 Thank you 0 \bigcirc \bigcirc \bigcirc +┿ I + + \bigcirc 1

www.keri.re.kr

KER 한국전기연구원

Driving Trade & Investment for DC Power Systems and Microgrid Frameworks Through Public Policy Alignment

Session 5 – Case Study: Successes and Challenges to Microgrid and

DC Power Initiatives in the Republic of Korea

Transition to Distributed Energy System in Korea

Feb. 24 2025 Dr. Dongjun Won, Inha University

Outlines

• Deployment of Microgrid in Korea for 15 years

- Transition to Distributed Energy System
- Development of new DER based System in Korea
 - New Market
 - Distribution System Planning
 - Non-Wires Alternatives(NWAs)
 - Distribution System Operator(DSO)
 - TSO/DSO/VPP Coordination
 - Local Flexibility Market

Deployment of Microgrid in Korea for 15 years

APEC 2025 KOREA

P2G based Multi-Microgrid (KEPCO RI, 2022)

- 3 Microgrids : Residential, R&D park and Industrial complex
- Sector coupling technology : Power to Gas(H₂)
- PV 1MW, ESS 250kW/500kWh, Electrolyzer 1 MW, FC 200kW
- Energy trading with blockchain
- Open microgrid platform by KEPCO RI

EC 2025

Multi microgrid and energy trading

Sector coupling of electric power and H₂

Energy superstation : Charging station microgrid

- Application of sector coupling technology in Korea DER roadmap
- Hybrid charging station for electric and hydrogen vehicles
- Microgrid operation with PV, ESS and fuel cell will be implemented
- Will provide ancillary service

EV charging station, PV and ESS

H₂ compressor and storage

C 2025

Hydrogen vehicle charging station

Difficulties in power system operation with renewables

- 1. Increase of uncertainty and variability
- 2. Low base generation, reserve and inertia
- 3. Congestion of network
- 4. Inconsistency in renewable energy and consumption

location \rightarrow Need for distributed energy system

Transition to Distributed Energy Resource(DER) System

Aggressive NDC Target for Carbon Neutrality

- Renewable energy, electrification with EV etc.
- Need to solve power grid problems (Renewable curtailment, network congestion, instability in frequency and voltage etc.)

"It's GRID, stupid!"

• In June 2023, DER Promotion Act in Korea is announced

- Paradigm shift to distributed energy system
- Deploy Distributed Energy Resources (Renewables, EV, ESS, MG, SMR etc.)
- Increase the hosting capacity of existing power system
- Localize energy generation and consumption
- Deploy non-wires alternatives(NWAs) solutions
- Create new markets for DER

Figure source : https://www.stantec.com/en/markets/energy/grid-modernization/distributed-energy-resources

DER Promotion Act (June 2023)

- Key action plans
 - Basic National DER promotion plan every 5 years
 - Mandatory DER installation in large customers
 - Mandatory system impact study for large new loads
 - Sandbox area for DER promotion
 - VPP market
 - Locational Marginal Pricing (LMP)
 - Distribution System Operator (DSO)

Development of New Market in Korea (2024)

• Spot Market (Day-Ahead) → Tendering Auction (Centralized) + Spot Market (Real-Time)

- Promote DER (DR, ESS, H₂ etc.) to handle the variability of renewable energy
- DER has more chances to get benefit from the market by providing flexibility

Distribution System Plan in Korea (2024)

• Distribution system plan become a part of public plan

EC 2025

Non-Wires Alternatives(NWAs) in Jeju island

• Definition : Alternatives to delay the grid investment with application of DER

• Utilization of Flexible DERs (ESS, EV, etc.) to expand distribution benefits and provide flexibility

EC 2025

DSO (Distribution System Operator) by KEPCO (2024)

- Definition of DSO
 - A 'neutral' operator responsible for the active control, dispatch, and market operation of DER and distribution system

DSO 1.0	DSO 2.0	DSO 3.0
 Utilization of controllable reso Providing limited local flexibil 	Integrated management of DERsProviding global system flexibility	 Decentralized management of variability and uncertainty of RES through market

TSO/DSO/VPP Coordination and Governance

- VPP participate in wholesale market but DERs are located in distribution system
- Need coordinated control between TSO-DSO-VPP

TSO: Transmission System Operator, DSO: Distribution System Operator, VPP: Virtual Power Plant

PEC 2025
Example of TSO/DSO/VPP Coordination in Jeju island

APEC 2025

Local Flexibility Market

• Introduce local flexibility market to respond to the uncertainty and variability of local DERs

EC 2025

- Market operation and bidding strategies for DER and aggregators
- Local solutions for reactive power/voltage control

Platform for VPP Bidding & Flexibility Market in Korea

- APEC 2025 K O R E A
- Establish a system (DSO-MD) for VPP market bidding and grid congestion management
- Prepare for the future DSO and LFM in Korea

Korea's Action Plan for DSO and LFM

>

- **Design Market Structure:** To enhance the value of local flexibility
 - \succ DERs → Value Stacking / DSO → Cost reduction and neutral operation

PEC 2025

- Collaboration framework with wholesale market and operations
 - MO Stabilize price fluctuation / Retailer Minimize energy cost /
 DSO Optimize distribution system operation

- Develop human resources and knowledge for DSO and LFM
 - ➤ Local flexibility market and DSO → National energy paradigm innovation

Opportunities and Challenges for Emerging and Developing Economies

Santiago Barcón PQ Barcon México

Contents

- Opportunities
- Challenges

- Lower the cost of the DC systems
- Use more efficiently to "avoid resell" the parts
- Provide "Luz de la Buena" to the communities
- "Luz de la Buena" is how the people without being connected to the electrical grid call Power
- A PV systems has to provide Power to start motors

- Lighting and some back up is welcome, but the need to operate motors is primordial
- Development of local producer of inverters and motors will be very important
- Imports cost fluctuations on exchange rates potentially can kill the project developments, so local integration lowers the risk

- Convince authorities that Power is needed
- Since the figures of service population has been published considering "light" and not "power" the high figures of service will diminish and is a difficult political decisions
- Train the electricians and users on the difference between DC and AC, mainly in breakers
- Involve Universities and Technical Schools in the effort

Driving Trade & Investment for DC Power Systems and Microgrid Frameworks Through Public Policy Alignment

Panel: Opportunities and Challenges for Emerging and Developing Economies.

Panelists:

- Danae Cancino, Regulatory Analyst, Ministry of Energy, Chile
- Santiago Barcón, CEO, PQ Barcon, Mexico
- Anastasiia Koltunova, Legal Officer, World Trade Organization

Moderator: Gwen Wang-Reeves, Engagement Director, GE Vernova

Decarbonization Commitment

Renewable Energy Integration

We must increase the share of renewable energy sources in our energy mix to accelerate the decarbonization process.

Enhance Grid Modernization

Upgrade and modernize the electrical grid to efficiently incorporate a larger share of renewable energy.

Invest in Clean Energy Technologies

Promote investments in technologies that support zero-emission electricity generation.

Ensure a Just Transition

Implement policies and initiatives that support a fair and equitable transition.

Chile's Electric System

National Electric System (SEN):

- Capacity: 36,729 MW.
- Supplies more than 99% of the total electricity consumption.
- Only 1 system in Chile.

Medium Systems (SSMM):

- Capacity: Between 1.5 MW and 200 MW.
- Supplies less than 1% of the total consumption.
- Currently we have 10 systems.

Isolated Systems (SSAA):

- Not formally defined, but typically smaller than 1.5 MW.
- **Supplies less than 0.01%** of the total consumption (serving around 10,000 users).
- More than 100 systems exist across Chile.

Isolated systems are located in 11 (of 16) different regions:

Operated by distribution companies:

• 30 systems with an average of 200 users.

Operated by locals:

- 23 systems with an average of 140 users.
- 50 systems with an average of 12 users.

Isolated Electric Systems Challenges

- Unattractive Market: Isolated Systems are not appealing to distribution companies due to high risk, low profit margins, geographical challenges, and low demand.
- **Reputational Risk for Large Companies:** Large companies avoid these systems due to **long replacement times**, tariff hikes, and reputational risks.
- Lack of Small-Scale Providers: There is no market for small-scale electricity distribution providers, and companies from other sectors see the operation of Isolated Systems as risky due to lack of experience and financial support.
- No Concessions in 40 Years: Under the current regulation, no company has applied for a concession in isolated areas over the past four decades.

Huatacondo Microgrid

First intelligent micro-grid in Chile based on renewable energies

- Breaking the barrier of **bringing cutting-edge technology to small**, remote towns.
- Generating efficient and replicable solutions for electric distribution.
- Strengthening and stabilizing isolated and interconnected electricity systems.
- Direct involvement of the community:
 - Decision-making processes.
 - Turning them into **operators.**
 - Assigning responsibilities for efficient energy use and minor maintenance.

Huatacondo Source: Energy Center (Centro de Energía)

Regulation

Regulatory complexity:

- The need for tailored regulations for the operation and management of microgrids.
- Technical regulations on service quality standards, equipment, and communications.
- Legal provision for a regulatory sandbox to facilitate innovation and pilot projects.

Governance in the electricity sector

Regulatory stability ensures long-term investment horizons.

Ministry of Energy

Creates and coordinates **policies and regulations** to facilitate the efficient development and functioning of the energy sector.

National Energy Commission

Autonomous institution. Defines and regulates **tariffs** and develops **technical standards** for the generation, transmission, and distribution segments.

Superintendency of Electricity and Fuels Ensures regulatory compliance among sector participants and administers sanction

National Electric Coordinator Operation of the National Electric System (ISO).

Experts Panel

Binding judgments about discrepancies and conflicts that arise from the application of electricity and gas service legislation.

Status of Microgrids in Chile: AC vs. DC

- The Chilean law's legal principle of non-discrimination between technologies ensures that neither AC nor DC microgrids are favored by regulation.
- AC microgrids are traditionally preferred due to compatibility with the Electric National System.
- DC microgrids are attracting interest for specific applications, such as isolated areas and industrial systems, due to the rise of solar energy and battery storage.

Developing Technical Capacities

More engineers specialized in DC technology. **Greater diversity**.

A diverse workforce drives innovation and strengthens the energy sector.

Addressing the need for specialized skills in DC technology creates an opportunity to promote women's leadership and participation. Diagnosis of the situation of women's insertion in the energy sector

Source: Developed by Deuman in collaboration with the Center for Women's Studies, for the Ministry of Energy, 2021.

Driving Trade & Investment for DC Power Systems and Microgrid Frameworks Through Public Policy Alignment

Danae Cancino Ministry of Energy

Eliminating barriers to trade through compatible regulatory frameworks for microgrids and DC power

APEC Workshop on Driving Trade and Investment for DC Power Systems and Microgrid Frameworks Through Public Policy Alignment

Christian Roatta, Senior Trade and Multilateral Affairs Specialist UL Solutions Feb. 24, 2025

Safety. Science. Transformation.™

Regulatory frameworks and conformity assessment

Strong frameworks must balance regulator, manufacturer and consumer interests

Elements of regulatory frameworks

Standards and technical requirements: The written minimum requirements applicable to a given product or service to be used to verify compliance and perform conformity assessment.

Conformity assessment: The process used to verify compliance with standards, schemes, regulations and other specifications. This includes evaluation, testing, inspection, validation, verification, certification and accreditation. Conformity assessment is generally performed by either first, second or third parties, depending on the system and a determination of the level of risk.

Confidence building and accreditation: A mechanism to assess and assure competence of the conformity assessment providers and method; accreditation is third-party attestation related to a conformity assessment body, conveying a formal demonstration of its competence, impartiality and consistent operation in performing specific conformity assessment activities.

Surveillance: Systematic iteration of conformity assessment activities as a basis for maintaining the validity of the statement of conformity; this can be pre-market testing or inspection, or post-market surveillance.

Roles of government and private sector Private

European Union

China

🔵 Japan

Brazil

Good practices for effective regulatory frameworks

		\frown
П		_
		_
	_	_
		_
		<u> </u>

International standards:

- Using international standards as the basis of technical regulations or conformity assessments is key to greater regulatory alignment and reducing barriers to trade.
- International standards as defined in the World Trade Organization Technical Barriers to Trade (WTO TBT) Committee Decision on International Standards¹

Δ

 Technical regulations – Periodically review technical regulations and conformity assessment procedures to examine increasing alignment with relevant international standards, including review of any new developments in relevant international standards.

Good practices for effective regulatory frameworks

Conformity assessment:

- Conformity assessment approaches are not one-size-fits-all.
- Regulators have the flexibility to choose and regularly review the appropriate method of demonstrating conformity according to their policy objectives, market characteristics, risk assessment and confidence needs.¹
- The conformity assessment development process is about appropriately identifying, analyzing, evaluating and managing risk in an efficient, effective manner while facilitating trade in line with international obligations.
- Regulators should assess the risks to public health, safety, security, the environment and privacy, as well as the impact noncompliance would have on society at large.

Good practices for effective regulatory frameworks

Confidence building and accreditation:

- Most frameworks consider bodies to which they can entrust the accreditation function and determine which conformity assessment activities require such accreditation.
- Promote confidence by establishing a clear set of requirements from which the conformity assessment providers will be selected and allow applications from organizations independent of their geographical location. This will allow the largest pool of providers to offer services and enable the marketplace to allocate resources more efficiently.

Surveillance:

- It is common for an economy to undertake several surveillance methods concurrently. This improves effectiveness while preserving enough flexibility to cover the variety of circumstances where noncompliance might be identified.
- Consider resources Third-party systems, like the U.S., build inspection/auditing into pre-market certification services so that post-market surveillance is less costly.

What does regulatory compatibility mean for microgrids?

Microgrids and component technologies experience significant challenges to demonstrating compliance. Example: Batteries

Evolving regulatory landscape

- Limited local testing
- ____ capabilities

Supply chain issues

Slow testing laboratory turnaround times

Compatible frameworks foster innovation, promote consumer safety, and facilitate trade and investment in microgrid frameworks.

Key takeaways

- When implemented in line with best practices, regulatory frameworks can simultaneously protect the public, facilitate trade and foster innovation.
- Effective regulatory frameworks have four common components: standards and technical requirements, conformity assessment, accreditation, and market surveillance.
- While there is no one-size-fits-all approach for conformity assessment, public–private partnerships are critical to effective regulatory frameworks.
- Regulatory frameworks that are grounded in the horizontal principles of the WTO TBT Agreement enable economies to achieve the three core objectives of consumer protection, trade facilitation and innovation.

Thank you

UL.com/Solutions

Safety. Science. Transformation.™

© 2025 UL LLC. All rights reserved.

The TBT Agreement and trade in DC power system and microgrid components

Anastasiia Koltunova Trade and Environment Division, World Trade Organization

> Workshop on driving trade & investment for DC power systems and microgrid frameworks Korea, 25 February 2025

Setting the scene: linkages between climate technologies, trade and regulatory measures

decline in the cost of solar panel systems

scale economies

international trade and value chains

Source: <u>World Trade Report 2022: Climate change and</u> international trade

The Agreement on Technical Barriers to Trade (TBT Agreement)

Objectives of the TBT Agreement

Pursuit of trade liberalization...

avoiding discriminatory and unnecessary barriers to trade

Members' right to regulate...

allowing WTO Members to fulfill legitimate objectives at levels they consider appropriate

international standards (*harmonization*)

Key disciplines under the TBT Agreement

- 1. Non-discrimination
- 2. Prevention of unnecessary obstacles to international trade
- 3. Transparency
- 4. Use of international standards (harmonization)

The implementation of these disciplines is supported by the WTO TBT Committee

Use of international standards

WORLD TRADE ORGANIZATION

The TBT Committee

Two main themes of Committee work

review of measures **"specific trade concerns"** (mostly based on notifications) Information exchange on cross-cutting issues (harmonization, transparency, ...): leading to decisions and recommendations

CAP Guidelines

Committee on Technical Barriers to Trade

GUIDELINES ON CONFORMITY ASSESSMENT PROCEDURES

NON-PRESCRIPTIVE PRACTICAL GUIDELINES TO SUPPORT REGULATORS IN THE CHOICE AND DESIGN OF APPROPRIATE AND PROPORTIONATE CONFORMITY ASSESSMENT PROCEDURES

DECISION

Adopted at the meeting of 13-15 March 2024

The WTO Agreement on Technical Barriers to Trade (TBT Agreement) recognizes that WTO Members may require a positive assurance of conformity with technical regulations or standards to fulfil their legitimate objectives, such as the protection of human health or safety, or the environment; and national security requirements. Building on previous decisions and recommendations, including in the Eighth and Ninth Triennial Reviews, the TBT Committee agreed to develop non-prescriptive practical guidelines to support regulators in the choice and design of appropriate and proportionate conformity assessment procedures.¹

14

Thank you!

Follow-us on Twitter: #WTOtbt

WTO | Technical Barriers to Trade

Case Study Enabling Business Models in Mexico

Santiago Barcón PQ Barcon México

Contents

- Some general figures of Mexico
- People
- Power Quality
- PQ Barcon
- General Advice

Some general figures of Mexico

- 2 million square kilometers
- 3,200 Km of border with USA
- 9,000 Km of shorelines
- 135 million people
- 70 languages but Spanish the official one
- Sonora State, second best in solar after Atacama in Chile

Some general figures of Mexico

- 90 GW installed capacity
- 11 GW of solar PV and 7 GW in wind.
- 4.5 GW in distributed generation (included in the 11 GW)
- Peak demand at 50 GW
- 110,000 Km of transmission lines
- 850,000 Km of distribution lines
- 48 M Users

- Comisión Federal de Electricidad, CFE, the state-owned utility, to keep 54% of the market
- Generation is based in gas and 80% imported from USA
- One nuclear plant
- Several hydropower
- Most of the units are dual (gas/heavy oil or gas/diesel) mostly for backup

Some general figures of Mexico

- HV level 400, 230 and 115 kV
- MV at 85, 69, 34.5, 23 and 13.8 kV
- Standards closer to IEC but NEMA still used
- But Electrical Installations in LV to NFPA70
- Big manufacturing base of electrical equipment's with exports over 40 billion UD dollars

- Quality of supply acceptable but heading south due to lack of investment in the last 12 years
- Demand growing at 3.5%, 1.5 to 2.5% more than the economy
- Energy efficiencies not the top priority
- Competitors of CFE: Iberdrola, Enel, Invenergy and others

- Mexico graduates 120,000 engineers per year
- Still profiting from this pyramid, but starting to finish
- Safety a pending matter. Our rate of electrical deads is unacceptable
- Part is due other our culture
- Most of the graduates do not speak English
- Women now majority in chemical and environmental engineering

- A term that is know but very seldom consider
- Everything is blamed to CFE that control, transmission and distribution
- After 70 years of monopoly, users are in Stockolm Syndrome
- Grid Code is operational bud has not been in forced for load centers
- About to change

- Brings over 3 decades of experience in Power Quality and reactive compensation
- Provides consulting and equipment, designed in house, for utilities and industry
- From 240 V to 230 KV, active and passive solutions
- Largest systems in Mexico supplied by us
- Teams up with leading component manufacturers from Europe, Canada and Korea

- Over 40 employees
- Equal share of women and men in Engineering
- IEEE Life Senior Member and very active in the standards
- Publish at least 4 papers per year and trains hundreds of engineers across the country for free
- Coauthors of "Power Quality: Reactive Compensation and Harmonic Filternin" with McGraw Hill

PQ Barcon Challenges

- Cash Flow
- Get young talent and motivate it
- Competition with big players is not easy
- But better than dishonet ones
- Utility problems are frequently blamed on our equipment
- Get Grid Code compliance inforced by the authorities

PQ Barcon Opportunities

- Economy growing at 2 % but electicity consumption at 4 %
- Clearer rules than last 6 years
- Regardless Trump's tariffs the economies are dependent of each other so little can change
- Productivity in internal process
- The new book: "How to be a Good Engineer. Ten commandments and 100 Top Tips" allows to get the best talent

General Advice in doing business in Mexico

- Get local advice, and hear it
- Do not apply other economies standards, specially on punctuality and direct communication
- Be innequivocal in compliance
- Ask three times in different ways
- Personal touch is a must
- Red tape is a fact, plan that things will get longer

Standards, Conformity Assessment, and Facilitating Investment

Joseph Conrad

25 Feb 2025

First Senior Officials Meeting, 2025: Energy Working Group 69

ANSI ANONPROFIT ORGANIZATION

THAT COORDINATES

THE U.S. STANDARDIZATION SYSTEM

AND REPRESENTS U.S. INTERESTS

TO INTERNATIONAL STANDARDS ORGANIZATIONS

Most economies (top down)

Standards development priorities are driven by government or national standards bodies

U.S. system (bottom up)

Standards development priorities are driven by users and markets

The Public/Private Partnership

The cornerstone of the U.S. standardization system

Government and industry together develop standards to achieve policy objectives

PUBLIC SECTOR

The government participates as a **stakeholder** in the standardization process, but does not mandate or legislate standardization outcomes.

ANSI COORDINATES THE PRIVATE-SECTOR STANDARDIZATION SYSTEM

STANDARDIZATION WORK

ANSI coordinates, supports, and safeguards the U.S. standards ecosystem.

ANSI **does not** write standards.

Coordinates and ensures the integrity of the U.S. standards and conformity assessment system

- Bridge between public and private sectors
- Neutral forum for coordination
- Accredits SDOs and approves American National Standards
- Repository for information on standards and conformity assessment and related activities in the U.S. and abroad

Represents the U.S. globally

Official U.S. representative in regional and international non-treaty standardization forums Facilitates access to these for U.S. stakeholders Coordinates capacity-building programs Promotes U.S. interests

ANSI plays a **coordinating role** in conformity assessment.

Standards and Conformity Assessment

Increased Investment

Benefits of Standards and Conformity Assessment

Users

- Decreases burden of compliance
- Decreases cost of goods and services
- Encourages innovation and economic competition
- Minimizes wastes, limits errors and increases productivity
- Facilitates international trade and avoids unnecessary obstacles to trade

Regulators

- Eliminates or reduces cost of developing standards
- Reduces enforcement costs
- Provides flexibility choice among standards
- Allows for timely and effective solutions to legitimate regulatory concerns
- Helps to protect against externalities

Increased Investment

Standards, Conformity Assessment, and Facilitating Investment
Reduces Risk

Investors

- Forecasting confidence
- Reduction in administrative burden

Consumers

- Increased product knowledge
- Better local tailoring

Regulators

• Fills existing domestic regulatory gaps

Suppliers/Builders

• Greater access to the global market

Investors

- Better terms
- Increased willingness to lend

Consumers

- Safer, better-fit systems
- Cheaper in the long term

Regulators

• Decreased duplication of efforts

Suppliers/Builders

- Increased product availability
- Decreased rework

- Local environment
- Load needs
- Storage needs
- Storage type
- Energy generation type
- Component -> Module -> System level

- IEC 62898 series
- IEEE 2030 series
- UL 3001, 3005, 3010
- NEC 2026 update

- NFPA, ASTM, ASME, NEMA, etc.
- CEN/CENELC, CSA, ISO, etc.

Sandia National Laboratories

Contact Information

Joseph Conrad

Senior Program Administrator, International Development jconrad@ansi.org intl@ansi.org

REGULATIONS AND PRACTICES ON STANDARDS AND CONFORMITY ASSESSMENT IN VIET NAM

Man Thuy Giang Manager – Research and Development Center Viet Nam Standards and Quality Institute Commission for Standards Metrology and Quality of Viet Nam

Gyeongju, February 2025

Two Laws regulate standardization and conformity assessment activities:

- Law on Standards and Technical Regulations (2006)
- Law on Quality of Products and Goods (2007)

Law on Standards and Technical Regulations deals with the:

- development and publishing standards;
- development and promulgating technical regulations;
- conformity assessment activities

→ ensure proper implementation of WTO membership obligations and eliminate technical barriers to trade

Main principles for standards and technical regulations development:

- to improve products quality and efficiency of socio-economic activities;

- to ensure safety, security, health, hygiene;
- to protect environment, fauna, flora, natural resource;
- openness, transparency, non-discrimination;
- do not cause unnecessary obstacles to production, business and trade;
- to ensure consensus-based;
- to harmonize with international, regional, foreign national standards, except in cases where such standards are not suitable for the geographical, climatic, technical and technological characteristics of Viet Nam or affect domestic interests.

Law on Quality of Products and Goods specifies two groups of products and goods:

- Group 1: does not pose a potential risk of causing unsafety to humans, animals, plants, the environment, ect
- Group 2: poses a potential risks of causing unsafety to humans, animals, plants, the environment, ect

Enterprises must:

- declare applicable standard for their product or good
- for group 2, declare the conformance with relevant technical regulations; product or good must be marked with conformity mark (QR)

APEC 2025

Declarations is based on conformity assessment results conducted by first party or third party.

Conformity assessment schemes and the requirements for bodies providing conformity assessment services are in accordance with the provisions in relevant international standards (such as ISO/IEC 17065; ISO/IEC 17025; ISO/IEC 17021-1 and related other parts;...)

Regulations allowing recognition of test results and certifications by recognized conformity assessment bodies.

Group 2 electric and electronic products currently include:

- household electrical appliances (QCVN 4:2009 on electrical safety and QCVN 9:2012 on electromagnetic compatibility);
- LED lightings (QCVN 19:2019);
- Electric vehicle conductive charging system: are drafting and will be published in 2025

APEC 2025

- No regulations on microgrid at this moment

All safety requirements are based on the safety provisions in relevant domestic or international standards by reference to these standards in the technical regulation.

Domestic standards related to DC power system and Microgrid

Current situation

No.	Products field	Number of TCVNs
1	Smart grid	11
2	Solar energy	39
3	Wind energy	7
4	Electric vehicle charging system	9
5	Lithium battery and charging cables	10

All domestic standards are identical with international standards (IEC)

Domestic standards related to DC power systems and Microgrid

Plan for 2025-2026

No.	Products field	Number of TCVNs
1	Wind energy	29
2	Plugs, socket-outlets, vehicle connectors and vehicle inlets (Electric vehicle)	6
3	Battery energy storage systems (BESS)	18

- All domestic standards are identical with international standards (IEC)

Domestic standards related to DC power systems and Microgrid

clean and renewable energy will be

EC 2025

- Domestic standards on clean and renewable energy will be prioritized in the coming years on the basis of harmonization with international standards;
- To consider the need to develop technical regulations related to DC power systems and microgrid;
- To develop conformity assessment regulations according to international common principles to facilitate international trade.

THANK YOU!